## Untitled

10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 32

**R E V I E W, p a g e s 7 5 4 – 7 5 8**
**1. **A penny, a dime, and a loonie are in one bag. A nickel, a quarter, and

a toonie are in another bag. Tessa removes 1 coin from each bag. Usea graphic organizer to list the total amounts she could haveremoved.

**Use an organized list.**

1¢ ؉

**5¢ **؍

**6¢**
**10¢ **؉

**5¢ **؍

**15¢**
**$1 **؉

**5¢ **؍

**$1.05**
**1¢ **؉

**25¢ **؍

**26¢**
**10¢ **؉

**25¢ **؍

**35¢**
**$1 **؉

**25¢ **؍

**$1.25**
**1¢ **؉

**$2 **؍

**$2.01**
**10¢ **؉

**$2 **؍

**$2.10**
**$1 **؉

**$2 **؍

**$3**
**So, there are 9 total amounts that Tessa could have removed.**
**2. **The Braille code consists of patterns of raised dots arranged

in a 3 by 2 array. The pattern for the letter Z is shown.

How many different patterns are possible? Explain your reasoning.

**Each position in the 3 by 2 cell may or may not have a raised dot.**

Use the fundamental counting principle.

The number of possible patterns is: 2 #

**2 **#

**2 **#

**2 **#

**2 **#

**2 **؍

**64**
**3. **A hiking group consists of 12 students and 2 leaders. A leader must

be at the front and back of the line. How many ways can the grouphike in a line?

**The number of ways the students can hike in a line is:**

12! ؍

**479 001 600**

The leaders A and B must be at the front and back of the line.

There are 2 ways for the leaders to line up: AB and BA

So, the number of ways the group can hike in a line is:

479 001 600 #

**2 **؍

**958 003 200**
Chapter 8: Permutations and Combinations—Review—Solutions
10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 33

**4. **A code consists of 4 letters from the English alphabet and 3 letters

from the Greek alphabet. There are 8 English letters and 6 Greekletters to choose from and repetition is not allowed. How many 7-letter codes are possible?

**Order matters, so use permutations.**

Determine the number of
**Determine the number of**
**ways to arrange 4 English letters**
**ways to arrange 3 Greek letters**
**chosen from 8 letters:**
**chosen from 6 letters:**
**8 **#

**7 **#

**6 **#

**5 **؍

**1680**
**6 **#

**5 **#

**4 **؍

**120**
**Use the fundamental counting principle.**

1680 #

**120 **؍

**201** **600**

So, there are 201 600 possible 7-letter codes.
**5. **How many 12-letter permutations of GOBBLEDEGOOK can be

**There are 12 letters: 2 are Gs, 2 are Es, 2 are Bs, and 3 are Os.**

Number of permutations:
**2!2!2!3!**
**So, 9 979 200 permutations can be created.**
**6. **How many ways are there to arrange all the words in this tongue

twister? CAN YOU CAN A CAN AS A CANNER CAN CAN A CAN?

**There are 12 words: 6 are CAN, and 3 are A.**

Number of permutations:
**12! **؍

**110**
**So, there are 110 880 ways to arrange all the words.**
**7. **How many 9-letter permutations of EQUATIONS can be created if

the vowels must appear together in the order A, E, I, O, and U?Explain.

**There are 5 vowels and 4 consonants.**

Since the vowels have to be together, consider them as 1 object.

So, there are 5 objects: the group of vowels and 4 different consonants.

The number of permutations of 5 objects is: 5! ؍

**120**

The vowels must be in the given order, so the number of permutations of

the vowels is 1.

So, all the letters can be arranged in 120 ways.
Chapter 8: Permutations and Combinations—Review—Solutions
10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 34

**8. **A student volunteers at a food bank. He fills hampers with these items:

5 cans of soup chosen from 7 different soups3 bags of pasta chosen from 4 different types of pasta4 bags of vegetables chosen from 8 different types of vegetables3 boxes of cereal chosen from 6 different types of cerealHow many ways can the student fill a hamper?

**Use combinations. The number of ways of choosing:**

5 cans of soup from 7 different soups is: C ؍

**21**
**3 bags of pasta from 4 different types of pasta is: C **؍

**4**
**4 bags of vegetables from 8 different types of vegetables is: C **؍

**70**
**3 boxes of cereal from 6 different types of cereal is C **؍

**20**
**Use the fundamental counting principle.**

21 #

**4 **#

**70 **#

**20 **؍

**117** **600**

The student can fill the hamper in 117 600 ways.
**9. **Solve each equation for

*n *or

*r*.

**(n **؊

**3)!3!**
**(7 **؊

**r)!r!**
**(n **؊

**3)!6**
**(7 **؊

**r)!r!**
** 6 **#

**84 **؍

**n(n **؊

**1)(n **؊

**2)**
** (7 **؊

**r)!r! **؍

**5040**
** 504 **؍

**n(n **؊

**1)(n **؊

**2)**
**Use a calculator.**
** (7 **؊

**r)!r! **؍

**144**
**3 504 **Џ

**7.96**
**Use guess and test.**
**So, try 3 consecutive**
**Since 4! **؍

**24,**
**numbers with 8 as the**
** (7 **؊

**4)!4! **؍

**6 **#

**24**
**middle number:**
**7 **#

**8 **#

**9 **؍

**504**
**Or, since ,**
**10. a) **These are the first 7 numbers in row 14 of Pascal’s triangle:

1, 13, 78, 286, 715, 1287, 1716Complete the row. What strategy did you use?

**Row 14 of Pascal’s triangle has 14 terms.**

The triangle is symmetrical: the numbers in each row read the same

from left to right and from right to left. So, the remaining numbers in

row 14 are the given numbers in reverse order: 1716, 1287, 715, 286,

78, 13, 1
Chapter 8: Permutations and Combinations—Review—Solutions
10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 35

**b) **Use your results from part a to write the numbers in row 15 of

**1 1 **؉

**13 **؍

**14**
**13 **؉

**78 **؍

**91**
**78 **؉

**286 **؍

**364**
**286 **؉

**715 **؍

**1001**
**715 **؉

**1287 **؍

**2002 1287 **؉

**1716 **؍

**3003**
**1716 **؉

**1716 **؍

**3432 1716 **؉

**1287 **؍

**3003 1287 **؉

**715 **؍

**2002**

715 ؉

**286 **؍

**1001**
**286 **؉

**78 **؍

**364**
**78 **؉

**13 **؍

**91**
**13 **؉

**1 **؍

**14**
**So, the numbers in row 15 are:**

1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1
**11. **Determine the value of each number in Pascal’s triangle.

**a) **the 4th number in row 13

**C Substitute: n**
؍

**12, r **؍

**3**
**b) **the 5th number in row 21

**C Substitute: n**
؍

**20, r **؍

**4**
**12. **The 4th term in the expansion of (

*x *+ 1)8 is 56

*x*5. Which other term

in the expansion has a coefficient of 56? Explain.

**Because both coefficients in the binomial (x **؉

**1)8 are 1, the coefficients in**

the expansion are the 9 terms in row 9 of Pascal’s triangle. These terms are

the same when read from left to right and right to left. So, in row 9, the 5th

term is the middle term, and the 6th term is the same as the 4th term, 56.
**13. **Expand using the binomial theorem.

**a) **(4

*x *- 1)5

**(x **؉

**y)n **؍

**C xn **؉

**C xn**؊

**1y **؉

**C xn**؊

**2y2 **؉

**. . . **؉

**C yn**
**Substitute: n **؍

**5, x **؍

**4x, y **؍ ؊

**1**

(4x ؊

**1)5 **؍

**C (4x)5 **؉

**C (4x)4(**؊

**1) **؉

**C (4x)3(**؊

**1)2 **؉

**C (4x)2(**؊

**1)3**
؉

**C (4x)(**؊

**1)4 **؉

**C (**؊

**1)5**
؍

**1(1024x5) **؉

**5(256x4)(**؊

**1) **؉

**10(64x3)(1) **؉

**10(16x2)(**؊

**1)**
؉

**5(4x)(1) **؊

**1**
؍

**1024x5 **؊

**1280x4 **؉

**640x3 **؊

**160x2 **؉

**20x **؊

**1**
Chapter 8: Permutations and Combinations—Review—Solutions
10_ch08_pre-calculas12_wncp_solution.qxd 5/23/12 4:24 PM Page 36

**b) **(5

*x*2 + 2

*y*)4

**(x **؉

**y)n **؍

**C xn **؉

**C xn**؊

**1y **؉

**C xn**؊

**2y2 **؉

**. . . **؉

**C yn**
**Substitute:**
** (5x2 **؉

**2y)4 **؍

**C (5x2)4 **؉

**C (5x2)3(2y) **؉

**C (5x2)2(2y)2**
؉

**C (5x2)(2y)3 **؉

**C (2y)4**
؍

**1(625x8) **؉

**4(125x6)(2y) **؉

**6(25x4)(4y2) **؉

**4(5x2)(8y3) **؉

**16y4**

؍

**625x8 **؉

**1000x6y **؉

**600x4y2 **؉

**160x2y3 **؉

**16y4**
**14. **Determine the indicated term in each expansion.

**a) **the 3rd term in (-7

*x *+ 1)6

**b) **the 7th term in (6

*x *+ 2

*y*)7

**The kth term is: C**
**xn**؊

**(k**؊

**1)yk**؊

**1**
**The kth term is: C**
**xn**؊

**(k**؊

**1)yk**؊

**1**
**Substitute: k **؍

**3, n **؍

**6,**
**Substitute: k **؍

**7, n **؍

**7, x **؍

**6x,**
**x **؍ ؊

**7x, y **؍

**1**
** C ( **؊

**7x)4(1)2 **؍

**15(2401x4)(1)**
** C (6x)1(2y)6 **؍

**7(6x)(64y6)**
؍

**36** **015x4**
؍

**2688xy6**
**The 3rd term is 36 015x4.**
**The 7th term is 2688xy6.**
**15. **Use the binomial theorem to evaluate (1.2)6. Use a calculator to

**Write (1.2)6 as .**
**(1 **؉

**0.2)6**
**(x **؉

**y)n **؍

**C xn **؉

**C xn**؊

**1y **؉

**C xn**؊

**2y2 **؉

**. . . **؉

**C yn**
**Substitute: n **؍

**6, x **؍

**1, y **؍

**0.2**

(1 ؉

**0.2)6 **؍

**C (1)6 **؉

**C (1)5(0.2) **؉

**C (1)4(0.2)2 **؉

**C (1)3(0.2)3**
؉

**C (1)2(0.2)4 **؉

**C (1)(0.2)5 **؉

**C (0.2)6**
؍

**1(1) **؉

**6(1)(0.2) **؉

**15(1)(0.2)2 **؉

**20(1)(0.2)3 **؉

**15(1)(0.2)4**
؉

**6(1)(0.2)5 **؉

**1(0.2)6**
؍

**1 **؉

**1.2 **؉

**0.6 **؉

**0.16 **؉

**0.024 **؉

**0.001 92 **؉

**0.000 064**

؍

**2.985 984**
Chapter 8: Permutations and Combinations—Review—Solutions

Source: http://moodle.sd58.bc.ca/moodle/pluginfile.php/35419/mod_folder/content/0/Chapter%208/pc12_sol_c08_review.pdf?forcedownload=1

Eur J Clin PharmacolDOI 10.1007/s00228-007-0454-6Predictors of orphan drug approval in the European UnionHarald E. Heemstra & Remco L. de Vrueh &Sonja van Weely & Hans A. Büller &Hubert G.M. LeufkensReceived: 12 September 2007 / Accepted: 19 December 2007Conclusion This study showed that experience of aObjective To encourage the development of drugs for rarecompany in develo

V e r ö f f e n t l i c h u n g e n P r o f . D r . O l i v e r M ü l l e r 1) Originalpublikationen ab 2005 Chen J, Röcken C, Lofton-Day C, Schulz HU, Müller O, Kutzner N, Malfertheiner P, Ebert M: Molecular analysis of APC promoter methylation and expression in colorectal cancer metastasis. Carcinogenesis 26(1): 37-43 (2005) Kutzner N, Hoffmann I, Linke C, Thienel T, Grzegorcz