Microsoft word - sports drinks, what works and what doesn't.doc


Not all sports drinks are created equal and there are many differences that exist
between brands. These differences are important because they not only determine the
type and quantity of nutrients provided to the body, but they also influence physiological
responses related to fluid absorption, hydration and performance. For example, too little
carbohydrate won't benefit performance, while too much carbohydrate slows absorption.
Too few electrolytes impair hydration, but too many electrolytes ruin taste.
According to research and published studies, a properly formulated sports drink should
rapidly rehydrate, replenish and refuel the body.

What makes an optimal sports drink?

1: An optimal level of carbohydrates.
Research indicates that 6 grams of carbohydrate per 100 ml of beverage strikes the ideal balance in taste, rapid fluid absorption, and delivery of carbohydrate energy to fuel working muscles.1,2,3 Drinks with too much carbohydrate – 8 per cent or above – delay stomach emptying and slow intestinal fluid absorption, increasing the risk of dehydration and gastrointestinal upset during exercise.1,4,5 2: The right type of carbohydrates.
A blend of carbohydrates including glucose and sucrose will take advantage of the way the body absorbs fluid and nutrients. Glucose speeds fluid absorption and provides energy that is immediately available to the body – ideal for active situations. Low GI (glycemic index) drinks and other “sports waters” contain fructose as their primary carbohydrate. The low GI claim stems from the fact that fructose has to be converted to glucose in the liver before it can be utilised as energy. This means it is not as readily available for energy as glucose-containing beverages.6 Consumption of beverages containing only fructose or high levels of fructose during exercise have also been associated with slower fluid absorption,7 greater incidence of gastrointestinal distress, and substantially poorer exercise performance.8
3: Electrolytes – to help you replace what you lose when you sweat.
Active people lose electrolytes – sodium, potassium, chloride – every time they sweat. Water fails to replace lost electrolytes and can quench thirst before the body is properly hydrated. Electrolytes (sodium, potassium and chloride) play a key role in hydration by stimulating thirst, enhancing fluid absorption from the small intestine, and aiding fluid retention.9,10 Gatorade recently increased the level of electrolytes by 20 per cent to enhance rehydration and help maintain the right level of electrolytes in blood.
Gatorade does not add ingredients that are unproven to aid hydration and performance
to its formulation. Why? Good science doesn’t support it.
Here are just a few of the things that don’t deliver what you need in a sports drink.

HERBS & VITAMINS – Common herbal supplements, like ginseng, have very weak
scientific support for use by athletes. Herbal ingredients often work like a medicine
instead of a nutrient and have been linked to adverse health effects such as
hypertension, insomnia and nervousness.11 While vitamins can aid in keeping athletes
healthy, they have not been shown to aid hydration or to affect immediate athletic
MALTODEXTRIN (glucose polymers) – There are no proven performance benefits
associated with maltodextrin over other carbohydrates in a sports drink.12
CARBONATION – Carbonation in a sports drink makes it very difficult to consume in
large volumes, which slows down the process of rehydration.
Here is a quick summary of the contents of some of the popular sports drinks on the market… Fluid Carbohydrate
per 100 mL
Source: adapted from material provided by Sports Dietitians Australia. 1 Murray R, Bartolli W, Stofan J, Horn M, Eddy D. Int J Sport Nutr: 9(3):263-74, 1999. 2 Welsh RS, JM Davis, JR Burke, and HG Williams. Med Sci Sports Exerc 34:723-731, 2002. 3 Shi, X et al. Med Sci Sports Exerc 27:1607-1615, 1995 4 Ryan AJ, GP Lambert, X Shi, RT Chang, RW Summers, and CV Gisolfi. J Appl Physiol 84:1581-1588, 1998. 5 Shi, X., M. Horn, K.L. Osterburg, J. R. Stofan, J. J. Zachwieja, C. A. Horswill, D. H. Passe and R. Murray. Inter. J. Sports Nutr. Exerc. Met. 14, 673-683, 2004 6 Massicotte, D., et al. Oxidation of a glucose polymer during exercise: comparison with glucose and fructose. Journal of Applied Physiology, 66:(1):179-183, 1989. 7 Schedl, H. P. et al Med. Sci. Sports Exerc 26, 267-280, 1994. 8 Murray, R., et al. The effects of glucose, fructose and sucrose ingestion during exercise. Medicine and Science in Sports and Exercise, 21:275-282, 1989. 9 Wilk, B. and Bar-Or, O. J Appl Physiol, 80:1112-1117, 1996. 10 Gonzalez-Alonso J, CL Heaps, EF Coyle. Inter J Sports Med. 13:399-406, 1992. 11 Maughan, R.J. and R. Murray. Sports Drinks: Basic and Practical Aspects, Chapt 9 pp. 225-255, 2001. 12 Maughan, R.J. and R. Murray. Sports Drinks: Basic and Practical Aspects, Chapt. 8 pp. 197-223, 2001.


Reply Form To: Sino Haijing Holdings Limited (the “Company”) I/We would like to receive the Corporate Communications (Note 3) of the Company in the manner as indicated below:( Please tick ONLY ONE box ) To receive Corporate Communications via the Company’s website (the “Company Website”) and to receive the notification of publication of Corporate Communications (the “


ACETYLSALICYLIC ACID bolus - 15.6 g/bolusACEVET inj. - Acepromazine maleate - 25 mg/mL ACEVET 10 tablet - Acepromazine maleate - 10 mgACEVET 25 tablet - Acepromazine maleate - 25 mgAMOXICILLIN 100 tablet - Amoxicillin 100 mgANTI-GAZ EMULSION solution - Bloat treatmentANTI-GAZ EMULSION solution - Bloat treatmentBUZONE CONCENTRATE powder - Phenylbutazone 266.6 mg/gCACO IRON COPPER inj. - C

Copyright ©2010-2018 Medical Science