Microsoft word - 13681-b man-u24.doc

HOBO® U24 Conductivity Logger
(Part # U24-001)

Inside this package:
The optical interface allows the logger to be offloaded without breaking the integrity of the seals. The USB compatibility allows for easy setup and fast downloads. A light (LED) in the communications window of the logger confirms logger operation. The following table explains when the logger blinks during logger operation: When: The
seconds (the shorter the logging interval, the faster the light blinks). Description
The HOBO U24 Conductivity logger is ideal for measuring and monitoring the impacts of pollutants such as road salt, agricultural runoff, chemical spills, and salt water intrusion on water supplies and aquatic ecosystems. Conductivity is a measure of water’s ability to conduct electrical current, which is effected by pollutants, Sleep Mode
especially those containing inorganic dissolved solids. The purer the water is, the lower the conductivity. Continuous The logger consumes significantly more power when it is monitoring of conductivity at multiple sites along a stream “awake” and connected to a base station or shuttle. The or in a well will determine when and where spikes of high logger will go into a low-power (sleep) mode if there has conductivity occur, with the goal of identifying the sources been no communication with your computer for 30 of contamination that caused the high conductivity. minutes. To wake up the logger, remove the logger from the coupler, wait a moment, then re-insert the logger. Software
Sample and Event Logging
The logger can record two types of data: samples and Communication
events. Samples are the sensor measurements recorded at each logging interval. Events are independent occurrences To connect the logger to a computer you can use: triggered by a logger activity, such as Bad Battery or Host • Optic USB Base Station (BASE-U-4) with a Connected. Events help you determine what was • HOBO Waterproof Shuttle (U-DTW-1) with a The logger stores 64K of data, and can record over 18,500 temperature and conductivity measurements. To launch and read out the logger in the field you can use one of these methods: • Laptop computer with Optic USB Base Station • HOBO Waterproof Shuttle (U-DTW-1) and a • HOBO U-Shuttle (U-DT-1, Firmware Version 1.12m030 or later) with Optic USB Base Station and coupler (COUPLER2-C). Connecting the Logger to a Computer
or Waterproof Shuttle
NOTE: Logging Battery Voltage is not essential since you
can check the battery voltage using the STATUS screen at
1. If you are connecting to a computer, follow the Launch or Readout of the logger. Logging the battery instructions that came with your base station or voltage will reduce the number of conductivity and Waterproof Shuttle to attach it to a USB port on Deploying the HOBO U24
2. Attach the coupler to the base station or shuttle. 3. Insert the logger into the coupler, aligning the The HOBO U24 is designed to be easy to deploy in many bump/arrow on the coupler with the arrow on the environments. The small size of the logger is convenient logger. Be sure that it is properly seated in the for use in small wells and allows the logger to be mounted NOTE: If you are using the HOBO Waterproof Shuttle
as a base station with a computer, briefly press the Coupler Lever to put the shuttle into base station mode. If the logger has never been connected to the computer before, it may take a few seconds for the new hardware to Deployment Guidelines
• You will need to use a field conductivity meter to Important: USB communications may not function
periodically calibrate the U24 readings. Calibrate properly at temperatures below 0°C (32°F) or above 50°C the field conductivity meter before taking it into • Make sure the logger is getting a steady flow of Before you deploy the HOBO U24 in the field, perform the following steps in the office: • If possible, when deploying the logger in rivers, streams and ponds, insert the logger in a PVC or ABS pipe. The PVC pipe should have enough 2. Connect the logger to the computer. See holes to ensure good circulation of water. “Connecting the Logger to a Computer or • To avoid bubbles collecting on the sensor, make sure the sensor face is vertical and avoid sudden Click STATUS on the toolbar and observe that the • Do not place any metal within 2.5 cm (1”) of the temperature is near the actual temperature. 4. Launch the logger. See the HOBOware User’s Collecting Data
Analyzing the Data
Initial Deployment at Each Site
1. Offload the most recent data files from the shuttle. 1. Launch the logger with a laptop or shuttle. 3. Calibrate data and convert to specific conductance 3. Allow enough time for the logger to temperature stabilize for the best accuracy (approximately 15 Conductivity Assistant to calibrate the readings and adjust for drift caused by fouling. You will 4. Gently tap the logger to remove any bubbles from need to enter the field meter readings and times the surface. Tug the string if you cannot reach the from the beginning and, optionally, the end of that 5. Measure the specific conductivity, referenced to Refer to the Help for the Conductivity Assistant 25°C, with the field meter. Record the value, time and location of that reading in a field notebook. If you cannot access the water with the meter, use a Maintenance
bailer or other device to obtain a water sample. Cleaning the Sensor
Repeat procedure for each logger deployed. Mix several drops of dish detergent or biodegradable soap Field Readout
in a cup of tap water with a clean cotton swab. Clean the sensor face using the cotton swab and then rinse the sensor Your readout and maintenance schedule will be with clean or distilled water. Do not scratch the sensor face determined by the amount of fouling at the site. 1. Calibrate the field conductivity meter before using Biofouling
Biofouling and excessive marine growth on the logger will 2. Before removing the logger, measure the specific compromise accuracy. Organisms that grow on the sensor conductivity with the field meter. Record the can interfere with the sensor’s operation and eventually value, time and location of that reading in a field make the sensor unusable. If the deployment area is prone to biofouling, check the logger periodically for marine 3. Remove the U24 logger from the stream. 4. Read out the data from the logger using a shuttle. Solvents
Check a materials-compatibility chart before deploying the logger in locations where untested solvents are present. Refer to the Specifications for materials. Protecting the Logger
8. Allow enough time for the logger to temperature IMPORTANT
9. Gently tap the logger to remove any bubbles from • This logger can be damaged by shock. the surface. Tug the string if you cannot reach the Always handle the logger with care. The logger may be damaged if it is dropped. Use proper 10. Measure the conductivity with the field meter. packaging when transporting or shipping the Record the value and time of that reading in the • Do not attempt to open the logger case or sensor WARNING: Do not cut open, incinerate, heat above
100°C (212°F), or recharge the lithium battery. The battery Disassembling of the logger case or sensor may explode if the logger is exposed to extreme heat or housing may cause serious damage to the sensor conditions that could damage or destroy the battery case. and logger electronics. There are no user- Do not dispose of the logger or battery in fire. Do not serviceable parts inside the case. Contact Onset expose the contents of the battery to water. Dispose of the technical support if your logger requires servicing. battery according to local regulations for lithium batteries. Specifications
Conductivity Temperature
Low Range: 0 to 1,000 µS/cm 5° to 40°C (41° to Full Range: 0 to The Battery
Battery Life
The battery life of the logger should be three years or more. Actual battery life is a function of the number of deployments, logging interval, and operation/storage temperature of the logger. Frequent deployments with logging intervals of less than one minute, and continuous storage/operation at temperatures above 35°C, will result conductivity ranges (64kbytes total memory) in significantly lower battery life. For example, continuous 1 second to 18 hrs, fixed or multiple-rate logging at a one-second logging interval will result in a battery life of approximately one month. To obtain a three-year battery life, a logging interval of one minute or greater should be used and the logger should be operated and stored at temperatures between 0° and 0° to 50°C (32° to 122°F) - non freezing Battery Voltage
The logger can report and log its battery voltage. If the mounting hole (1.25" diameter x 6.5", ¼” battery falls below 3.1 V, the logger will record a “bad battery” event in the datafile. If the datafile contains “bad battery” events, or if logged battery voltage repeatedly falls below 3.3 V, the battery is failing and the logger The CE Marking identifies this product as should be returned to Onset for battery replacement. complying with all relevant directives in the European Union (EU). Replacing the Battery
2010 Onset Computer Corporation. All rights reserved. To have your logger’s battery replaced, contact Onset or Onset, HOBO, and HOBOware are trademarks or registered trademarks your place of purchase for return arrangements. Do not of Onset Computer Corporation covering its data logger products and attempt to replace the battery yourself. Severe damage to the logger will result if the case is opened without special All other trademarks are the property of their respective companies.

Source: http://www.phelectronica.com.ar/imgs/pdf/13681-B-MAN-U24.pdf

Naskah pdgi 2008 - melok aris

PERBEDAAN KADAR MATRIX METALLOPROTEINASE-8SETELAH SCALING DAN PEMBERIAN TETRASIKLIN PADA(The difference of Matrix metalloproteinase-8 levels after scaling andtetracycline addition of chronic periodontitis)Melok Aris WahyukundariDepartemen PeriodonsiaFakultas Kedokteran Gigi Universitas AirlanggaSurabaya – IndonesiaMatrix metalloproteinase, especially MMP-8 is the key indicator related to pe

tyarcaouen.free.fr

Du 15/02/1770. Inventaire et certificat des titres de noblesse de la maison de la Lande Calan et du Cleuz du Gage que Monsieur le marquis du Gage donné en confiance de Monsieur le comte de la Lande pour ce dernier les rendre au premier réquisitoire dans l'ordre qui suit. En premier :-Année 1431 Le contrat de mariage d'entre Ollivier de la Lande et Jehanne de la Vache sur velin avec le couvert

Copyright ©2010-2018 Medical Science